Believers Information Network



   Pythagoras Meets Hippocrates

We now examine the the geometric implications of Py.
We redefine Py, based on our previous definition where we used circumferences:

Py is the the relationship(ratio) of the area of a circle, to the area of a
square, with the diameter of the circle being equal to the side of the square.
Referring to our diagram below:
Py(11/14) will be:
Area of circle O(11) with diameter HD / Area square ACEGA(14) with side HD.






Referring to the diagram the following:

Consider the the square ACEGA and the Circle O.


1. Allocate surface areas a and b to lune BCD.
2. Surface area bow HID is 4a.(Pythagoras- BC=a, BD= 2a, HD =4a)
3. Area lune BCD is equal to area triangle BOD(Hippocrates)
4. Therefore area BID is equal to area b.
5. Consider area square BCDO: 2b + 4a
6. Area square ACEG = 4 x (4a + 2b) = 16a + 8b --------- 1
7. Area circle segment BOD = 4a + b
8. Area circle O = 4 x (4a + b) = 16a + 4b ----------2

We are now able to establish rational values for a and b.

9. Substituting for square     16a + 8b = 14 ------- 1
10.              and for circle     16a + 4b = 11 ------- 2
11.  1-2                                          4b = 3
12.                                                   b = 3/4 ----------->      
13.  substituting b in --1         16a + 6 = 14
14.                                               16a = 8
15.                                                   a = 1/2 ----------->   

By substituting these values in our diagram we find no conflicts.
Area of square ACEGA = 14
Area of square BDFH =   7
Area of circle O = 11
Py 11/14
We have managed to unite the square and the circle into
one harmonious rational diagram with no conflicts.

   Return to Pi and squaring the circle.